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SUMMARY

The dynamics of shallow water has been studied and an algorithm for this dynamics has been developed. Results
have been obtained with data of the Venice lagoon using a model made expressively by a semi-implicit method
based on a ®nite element method in space. Comparison has been made between ®eld data and the results of the
simulation. Very good agreement is shown over a long period of simulation. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper a model is presented to solve the problem of the water motion due to the tides in the

Venice lagoon. The physical model considered is the long-wave model. The equations considered are

the shallow water equations obtained by the Navier±Stokes equations reduced to a 2D approximation

problem. The model is obtained considering different depths of the lagoon and in particular a ®ner

discretization is considered where the water runs with greater speed, namely along the more

important canals. A numerical method based on a ®nite element discretization is presented and

numerical results are given. The model is shown to be very stable and capable of preserving the water

quantity of the system. The wind effect is also considered and proves to be very in¯uential on the

behaviour of the model.

2. NAVIER±STOKES EQUATIONS

In this paper the shallow water equations are derived from the full 3D Navier±Stokes equilibrium and

continuity equations for a viscous incompressible Newtonian ¯ow under the following assumptions.

(a) The water elevation with respect to the free surface at rest is at any time much smaller than

the depth.

(b) Vertical effects (acceleration and diffusion) are negligible.

(c) Horizontal velocities do not vary with the depth.
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During the complete process of derivation of the discretized set of solution equations, viscous and

convective terms are neglected; they are eventually considered to some extent and treated in a

separate section and the ®nal contributions are included in the original system as additional terms.

The technique adopted for the discretization and solution of the governing equations is based on a

semi-implicit projection method. Such methods in shallow water analyses were introduced by

Chorin1 and Temam2 and then successfully adopted at moderate Reynolds numbers by many authors.

Because of the boundary conditions implicitly imposed on the pressure, the methods were thought to

give from the theoretical point of view an incorrect answer for the pressure in the general case of non-

periodic boundary conditions; in contrast, numerical results showed good approximations for the

pressure ®eld. Indeed, studies carried out by Gresho,3 Rannacher,4 Shen5 and ®nally Schwab6 led to

the proof that the pressure obtained by these methods asymptotically converges to the correct answer

as the integration time step tends to zero.

Let O � R3 be a bounded domain with a suf®ciently smooth boundary G� @O. The Navier±Stokes

equations governing the dynamical behaviour of an incompressible Newtonian ¯ow in O are given by

@

@t
u� �u � H�u� Hpÿ nH2u � q; H � u � 0; �1�

where u� ui�x1; x2; x3; t� and p� p�x1; x2; x3; t� are velocities and pressure respectively, n is the

viscosity coef®cient, q collects all external forces and t denotes the time.

These equations are to be integrated in the space±time domain O6]0, T[, with T a pre®xed time,

once an appropriate set of initial and boundary conditions has been de®ned. While the former

conditions in general only need to reproduce a feasible shape of the current solution, the latter have to

be set and treated with much care owing to the effect they can have on the evolution process.

A typical approach consists of prescribing the boundary velocities, say

ujG � b�xG; t�; �2�
with xG 2 G, allowing, incidentally, for the treatment of globally moving systems. This is de®nitely

realistic from a physical point of view but computationally not very convenient; therefore most

usually (2) is decomposed into normal and tangential components, i.e.

n � ujG � n � b�xG; t�; �3�

uÿ n � ujG � bÿ n � b�xG; t�; �4�
where n is the outward normal to the boundary G. The latter represents the so-called no-slip condition.

3. SHALLOW WATER EQUATIONS

We consider the case where the wavelength is assumed to be greater than the water depth H (see

Figure 1). Under this hypothesis the vertical velocity and acceleration are negligible and the ¯ux

becomes almost horizontal. Having performed the vertical integration of the third dimension,

Z � Z�x1; x2� is the height of the free surface;

u1 � u1�x1; x2� is the velocity component along the x1-direction;

u2 � u2�x1; x2� is the velocity component along the x2-direction;

averaged over the depth.
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The shallow water equations in conservative form with respect to the Cartesian system of spatial

co-ordinates x1 and x2 become in compact form7,8

@U

@t
� @F1

@x1

� @F2

@x2

� R; �5�

where U� u(x, t)� [h; hu1; hu2�T,

F1 �
hu1

hu2
1 � 1

2
g�h2 ÿ H2�

hu1u2

0B@
1CA; F2 �

hu2

hu1u2

hu2
2 � 1

2
g�h2 ÿ H2�

0B@
1CA;

R � Rs �
@Rd1

@x1

� @Rd2

@x2

;

with

Rs �

0

fhu2 � g�hÿ H� @H
@x1

ÿ gjuju1

C2H

ÿfhu1 � g�hÿ H� @H
@x2

ÿ gjuju2

C2H

0BBBB@
1CCCCA;

Rd1 �

0

2mHh

r
@u1

@x1

mHh

r
@u2

@x1

� @u1

@x2

� �
0BBBBB@

1CCCCCA; Rd2 �

0

mHh

r
@u2

@x1

� @u1

@x2

� �
2mHh

r
@u2

@x2

0BBBBB@

1CCCCCA:
Where h�x1; x2; t� � H�x1; x2� � Z�x1; x2; t� is the total height of the ¯uid, u1 � u1�x1; x2; t� and

u2 � u2�x1; x2; t� are the components of the velocity with respect to the co-ordinate axes, g is the

acceleration due to gravity, C and f are the Chezy and Coriolis coef®cients respectively and mH and r
are the viscosity coef®cient of turbulence and the density respectively, having omitted the

atmospheric pressure. In (5), F1,2� f1,2(U, x) indicate the ¯ux vectors in the co-ordinate directions x1

Figure 1. Shallow water scheme
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and x2 respectively, while Rs� rs(U, x) is the load vector and Rdi, i� 1, 2, indicate the diffusion

¯uxes. If the equations in (5) without consideration of diffusivity are integrated over O, a domain in

R2, by use of the divergence theorem one has

@

@t

�
O

U dO
� �

� ÿ
�
G
�F1n1 � F2n2� dG�

�
O

Rs dO; �6�

where n� (n1, n2) is the outward normal to G� @O.

Expression (6) shows that the rate of accumulation of U into O is given by the integral of the

normal ¯ux along the boundary G and of the quantity U `generated' inside O. Under the long-wave

hypothesis, omitting advection and viscous terms, one obtains the shallow water system9

@Z
@t
� @Hu1

@x1

� @Hu2

@x2

� 0;

@u1

@t
� g

@Z
@x1

� fu2 ÿ
g
p�u2

1 � U2
2 �

C2H
u1;

@u2

@t
� g

@Z
@x2

� ÿfu1 ÿ
g
p�u2

1 � u2
2�

C2H
u2:

�7�

Here, differently from system (5), the non-linearity is present only on the right-hand side of system

(7); it is therefore a semi-linear system, while (5) gives the non-linear model of the dynamical

behaviour of shallow water (for further details see References 10±13).

According to the type of problem to be solved in a domain O � R2, the system of equations (5) has

convenient initial and boundary conditions. To study the tidal motion in the Venice lagoon, the semi-

linear model (7) has been considered, omitting the convective terms in the ¯ux vectors. The

application to this model of the explicit Taylor±Galerkin method has given good results; therefore

this model has been assumed with convenient boundary conditions as the starting point of the

simulation of the tidal motion.

4. DOMAIN DECOMPOSITION METHODS

To solve the shallow water equations, it is necessary to use sophisticated numerical methods because

of the large number of nodes that are involved. Different approaches have been used by iterative

methods such as conjugate gradient and Cholewski decomposition. The domain decomposition

method has also attracted great interest according to different ways followed by different authors. We

observe that recently there has been an increase in research activities in the area of parallel computing

owing to the advent and growth of various parallel processing architectures. The domain

decomposition approach can achieve the highest level of parallelism in the numerical solution of

partial differential equations. The idea of domain decomposition goes back to Schwarz,14,15 but only

in recent years have researchers developed and extended these ideas to use them with parallel

architectures.

The domain decomposition technique can be employed for the solution of problems de®ned on

irregular domains, using the same equations to be solved on all domains.16,17 This technique allows

the use of different numerical schemes and different resolution or different types of elements for the

®nite element method.18 The domain decomposition technique can also be used if the problem

requires different mathematical models for different subdomains, as often happens in ¯uid dynamics

using a viscous model near the boundary and an inviscid model in the far ®eld.19,20

For the domain decomposition we have both overlapping and non-overlapping approaches. For the

non-overlapping method, most of the applications up to now have been developed for the interfaces
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or, more speci®cally, to ®nd good preconditioners of the conjugate gradient algorithm21 for the linear

system arising from the discretization of elliptic partial differential equations in two- or three-

dimensional domains.22,23

Sometimes it is convenient to follow another approach which constructs a decomposed domain

preconditioner for the simultaneous iterative procedure on the whole domain. One of the advantages

of this approach is that only approximate subdomain solvers are required. This alternative approach

was ®rst proposed in References 24 and 25 and further studied in References 26 and 27. Another

work along this line on shallow water is Reference 28. Another formulation is given in Reference 29,

where a set of ®rst-order non-linear hyperbolic partial differential equations is written for shallow

water problems which has very important applications in meteorology and oceanography. These

equations can be used to study tides and surface water run-off. They can also be used to study large-

scale waves in the atmosphere and ocean if terms representing the effects of the earth's rotation

(Coriolis terms) are included. The equations used in this case are the two-dimensional shallow water

equations with the Chezy term neglected. These equations are solved using a Galerkin ®nite element

method for the primitive equations of numerical weather prediction.30 This method gives a good

numerical solution in meteorological problems. For the solution the Schur complement is used.29

It is well known that in the ®nite element method the internal degree of freedom can be condensed

at the element level before the assembly process, and if the same procedure is applied in a subregion,

it can be considered as a new structure at the subregion level. In this procedure, two classes of

variables are usually identi®ed, namely the internal variables of nodes within subdomains and the

interface variables relevant to nodes belonging to two or more subdomains. When the discretization

for ®nite elements is made, the internal variables can be numbered either before or after the interface

ones.

The numerical integration method of the shallow water equations for the Venice lagoon will be

discussed in detail in the next section. Here we discuss the domain decomposition of the lagoon

because we are particularly interested in the computational speed-up resulting when using the domain

decomposition technique. We consider the subdivision of the domain O under consideration in the

following way: O is subdivided into two subdomains O1 and O2, with O�O1 [ O2 [ G and

O1 \ O2 � 0, where G is the boundary between the two regions O1 and O2.9,31 Let us denote the

original nodal numbers as the old numbering, while the nodal numbers after renumbering (namely the

substructure numbering) will be denoted as the new numbering. This becomes cumbersome if we

think of the ®nite element numbering method in which the relationship among global nodes, local

nodes and element numbering turns out to be crucial in the numerical solution of the matrix

corresponding to the problem. Better results can be obtained by using various mesh resolutions,

mostly dealing with local re®nements in the neighbourhood of singularities in the de®nition of the

boundary or near the mouths.

Therefore we use the following rule: the node indices are renumbered in sequence starting with the

region O1, following with the region O2 and ®nally with the boundary G. As a consequence of this

rule the matrix A of the linear system to be solved,

Ax � f ;

has the form

A �
A11 0 A13

0 A22 A23

A31 A32 A33

0@ 1A;
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which is compatible with the topology of the central lagoon. Therefore it would have been too

dif®cult to think of a method with overlapping regions and almost inextensible to such a complicated

area.

The nature of the method itself makes it possible to apply any order of decomposition11,29

necessary to extend this methodology to the entire lagoon. This opens the way to the use of parallel

computers; in fact, the times required to make sequential calculations are comparable with those

obtained on the same machine with the conjugate gradient solver, which has given in this case from 2

to 3 s for initialization and 351 s for complete solution of the same simulation time with identical time

step. Therefore, if such advantages are obtained with sequential calculation, a greater advantage is

expected on the global evaluation time owing the use of parallel calculation. The topological

properties of the domain also suggest using the domain decomposition to obtain the advantage of

evaluating together regions of comparable physical characteristics. Nevertheless, the domain

decomposition has to be realized conveniently, namely each subdomain should have almost the same

number of nodes and the internal boundaries should have a number of nodes as small as possible.

Two cases are considered, for example, in the case of subdivision into only two subdomains (see

Table I). As can be seen, Case 1 is unbalanced and Case 2 is balanced.

The time step for the implicit scheme applied to the central lagoon of Venice has been evaluated

every 5 min for a space discretization of 890 nodes for the central lagoon. To be able to make a faster

model, the domain decomposition idea has been applied to this such region. The choice of the global

time step is then based on the triangles of smaller size along the canals of greater depth, although a

larger time step would be required in those areas where a coarser mesh was suf®cient. Therefore the

possibility of using domain decomposition is extremely important, allowing us to subdivide the

region studied so as to treat with a Courant number suf®ciently homogeneous and to save CPU time.

In the case of the total Venice lagoon we decompose it into 10 subdomains and the nodes of the

interfaces are collected into a unique set. The number of nodes of the entire discretization is 1967 and

there are 3423 elements. The results of the calculation obtained using the domain decomposition

method without parallelization have a speed-up of approximately 25% over the conjugate gradient

solver used on a non-decomposed domain (see Plate 1).

5. SEMI-IMPLICIT SCHEME

In order to solve the shallow water equations of the Venice lagoon, a projection method is adopted

here. This leads to a split or fractional step model as follows.

Equations (7) can be written in vector form as

@U

@t
� @F1

@x1

� @F2

@x2

� Rs; �8�

Table I

Case 1 Case 2

External nodes 508 350
Internal nodes 251 381
Boundary nodes 131 159
Total time (s) 635 581
Initialization time (s) 170 190
Iteration time (s) 464 390

86 M. MORANDI CECCHI, A. PICA AND E. SECCO

INT. J. NUMER. METH. FLUIDS, VOL. 27: 81±95 (1998) # 1998 John Wiley & Sons, Ltd.



where

U � �Z; u1; u2�T; F1 � �Hu1; gZ; 0�T; F2 � �Hu2; 0; gZ�T;

Rs � 0; fu2 ÿ
gjuju1

C2H
; ÿfu1

gjuju2

C2H

� �T

:

By taking

Fi � F�i � F��i �i � 1; 2�; U�n�1� � U�n� � DU� � DU��;

with F�i � 0, F��i � Fi and DU� and DU�� the corresponding increments in the solution vector from

time step n to step n� 1, system (8) can be split into

@DU�

@t
� Rs

@DU�

@t
� @F

�
1

@x1

� @F
��
2

@x2

� Rs

� �
; �9�

@DU��

@t
� @F

��
1

@x1

� @F
��

2

@x2

� 0: �10�

The semi-implicit scheme consists of solving alternate (9) by an explicit time integration procedure

and (10) by an implicit method. It can be observed that owing to the form of the forcing vector Rs,

equation (9) never causes any variation in the elevation Z.

6. TIME AND SPACE DISCRETIZATION

6.1. Equation (9)

The discretization in time of equation (9) is obtained by a second-order Taylor expansion, which

for a time step Dt, gives

�DU���n�1� � Dt
@DU�

@t

� ��n�
�Dt2

2

@2DU�

@t2

� ��n�:
�11�

According to (10) and the obvious relationships

@DU�

@t
� Rs;

@2DU�

@t2
� @Rs

@t
� @Rs

@DU�
@DU�

@t
; �12�

system (11) can be rewritten as

�DU���n�1� � Dt�Rs��n� �
Dt2

2
�GRs��n�; where G � @Rs

@DU�
: �13�

Because of the computational complexity in the evaluation of the rightmost term of equation (13),

we use a two-step version of the Taylor±Galerkin algorithm.32 This is given by an approximation of

U�n�1=2� and (Rs)
�n�1=2� with the Taylor expansions

U�n�1=2� � U�n� � Dt

2
�Rs��n�;

�Rs��n�1=2� � �Rs��n� �
Dt

2

@Rs

@t

� ��n�
� �Rs��n� �

Dt

2
�GRs��n�;
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from which we obtain

�GRs��n� �
2

Dt
��Rs��n�1=2� ÿ �Rs��n��:

If the point collocation method based on the mesh nodes is adopted for the discretization in space

of system (13), this reduces to a set of uncoupled equations which can be easily solved by a simple

evaluation of the right-hand side.

6.2. Equation (10)

For the treatment of equation (10) it is convenient to write it in the extended form

@

@t
�DZ��� � @

@x1

�Hu1� �
@

@x2

�Hu2� � 0;

@

@t
�Du��1 � �

@

@x1

�gZ� � 0;

@

@t
�Du��2 � �

@

@x2

�gZ� � 0:

�14�

This is discretized in time according to the y-method proposed in References 10 and 33, giving

�DZ����n�1� � Dt
@

@x1

�Hu
�n�y1�
1 � � @

@x2

�Hu
�n�y1�
2 �

� �
� 0;

�Du��1 ��n�1� � Dt
@

@x1

p�n�y2� � 0;

�Du��2 ��n�1� � Dt
@

@x2

p�n�y2� � 0;

�15�

where p� gZ, y1 and y2 are real parameters in [0,1] and

u
�n�y1�
i � u

�n�
i � y1��Du�i ��n�1� � �du��i ��n�1��; i � 1; 2;

p�n�y2� � p�n� � y2�Dp����n�1�:
�16�

It should be observed that the term (Dp*)�n�1� does not appear here since it is always null, as

remarked in the previous section.

Replacing now expressions (16) in (15), this becomes

1

g
�Dp����n�1� � Dty1

P2
i�1

@

@xi

�H�Du��1 ��n�1�� � ÿDt
P2
i�1

@

@xi

�Hu
�n�
1 � � Dty1

P2
i�1

@

@xi

�H�Du�1��n�1��;

�Du��1 ��n�1� � Dty2

@

@x1

��Dp����n�1�� � ÿDt
@

@x1

p�n�;

�Du��2 ��n�1� � Dty2

@

@x2

��Dp����n�1�� � ÿDt
@

@x2

p�n�;

�17�
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which allows (Du��1 ��n�1� and (Du��2 ��n�1� to be obtained from the second and third equations in terms

of the increment in pressure and of the pressure at the previous time step. Substitution of these

expressions into the ®rst equation of (17) leads to

1

g
�Dp����n�1� ÿ Dt2y1y2

P2
i�1

@

@xi

H
@

@xi

�Dp����n�1�
� �

� ÿDt
P2
i�1

@

@xi

fH �u�n�i � y1�Du�i ��n�1��g ÿ Dty1

P2
i�1

@

@xi

H
@

@xi

p�n�
� �� �

; �18�

where the only unknown is the increment in pressure, (Dp����n�1�:
The discretization in space is performed here using linear triangular elements. After application of

Green's formula to the term including second derivatives in the variational (Galerkin) form of (10),

the linear system of equations�
1

g
M� Dt2y1y2S

�
�Dp����n�1� � ÿDt

P2
i�1

QifH �u�n�1 � y1�Du�i ��n�1��g � Dty1Sp�n�
� �

�19�

is obtained, where

S �P2
i�1

�
O

@�f�
@xi

H
@�f�T
@xi

dO
� �

; Qi �
�
O
�f� @�f�

T

@xi

dO: �20�

Here f is the vector of shape functions at all nodes in the mesh and the same notation has been

adopted for the nodal variables as for the corresponding functions in (18).

Once the increment in pressure has been evaluated from (19), it can be replaced in the second and

third equations of (17), which in discretized form is given by

M�Du��1 ��n�1� � ÿDtQi�p�n� � y2�Dp����n�1��; i � 1; 2; �21�
in order to obtain the velocity sub-increments (Du��1 ��n�1� and (Du��2 ��n�1�.

7. SOLUTION PROCESS

Summarizing what has been seen in the previous section, the solution process involves, for every

single time increment, the following steps.

(a) Evaluate (Du�1��n�1� and (Du��2 ��n�1� (here (Dp���n�1� � 0 from (13)).

(b) Solve (19) for (DZ����n�1� (obtained as (1/g) (Dp����n�1��:
(c) Solve the pair of (apparently) uncoupled systems (21) for (Du��1 ��n�1� and (Du��2 ��n�1�.
(d) Evaluate the new solution vector as U�n�1� � U�n� � �DU���n�1� � �DU����n�1�:

From a computational point of view, systems (13), (19) and (21) have been treated in different

ways from each other.

7.1. Solution of (13)

This set of equations has been obtained, as anticipated, by using the point collocation method for

the discretization, owing to the complexity of a ®nite element representation of the right-hand side.

Therefore the system has been solved by simply setting the values of the variables to the

corresponding values of the right-hand side evaluated at the nodes of the mesh used later for the other

equations.
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7.2. Solution of (19)

In this case the conjugate gradient method has been adopted in order to contain the storage

requirements, since it allows all quantities needed during an iteration to be evaluated at the element

level and then assembled in vector form. Both a standard and a preconditioned version of the

algorithm have been used with success, showing very fast convergence to the rather strict limit of

10ÿ5 for the ratio between the norms of the current residual vector and of the forcing vector at the

start of the conjugate gradient iterations.

7.3. Solution of (21)

The matrix of this pair of systems is the usual consistent mass matrix (density equal to one) which

comes out in all dynamic analyses, where it has often been successfully replaced by a diagonal

lumped version. This analogy has suggested the following iterative method for the solution of (21):

��Du��1 ��n�1��r�1 �Mÿ1
L ff �n�i ÿ �MÿML���Du��2 ��n�1��rg; r � 0; 1; 2; . . . ; i � 1; 2;

where ML is the diagonal matrix obtained from M by row summation, f
�n�

i is the right-hand side of

the ith system and suf®xes r and r�1 stand for two subsequent iterations of the solution process.

Usually the velocity sub-increments are assumed to be null at r� 0.

This method is based on a decomposition of the mass matrix as

M � M
1=2
L fI� �Mÿ1=2

L �MÿML�Mÿ1=2
L �gM1=2

L

and can be shown to be convergent under the assumption that the norm of the matrix in square

brackets is less than one, as in the present case.

It must be pointed out here that the two systems (21) are only apparently uncoupled in the present

context. As a matter of fact the presence of the boundary conditions (2), in this case represented by a

request of zero velocity in the direction normal to the boundary, can be dealt with in a simple way

only by projecting the velocity vectors at the boundary nodes onto the tangent to the boundary; this

requires that the two solution processes be carried on simultaneously and the projection be performed

at each iteration. The `inherent' error in the equilibrating forces inevitably introduced in this way (the

same also happens for system (13)) has suggested the use of the ratio between the norms of the

variation of velocity and of the total velocity sub-increment for the check of convergence; also in this

case, very fast convergence can be reported for a tolerance of 10ÿ3.

8. DIFFUSION, CONVECTION AND WIND TRACTIONS

It can be observed that so far the terms related to diffusion and convection have been ignored. This

has been done in part for the sake of simplicity in the derivation of the systems of equations and in

part because it had been found that their in¯uence on the computed solution was practically

insigni®cant over a period of several hours. In contract, wind tractions seem to be rather important in

the area of interest, the Venice lagoon, and could not be ignored in the present context. All these

terms have been included in the analysis programme to some extent according to the following

discussion.

8.1. Diffusion

The viscous term is not totally ignored. In fact it appears in the friction term with the bed. This

term is obtained by integration of the viscous term in the vertical direction under the condition of

vanishing velocity on the bed; namely, the conditions imposed are those of no-slip. The same
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conditions would be necessary to show turbulence at the boundary. The reason for this treatment is

the different order of magnitude of the proposed problem. We should remember that the shallow

water equations are de®ned to study transport phenomena where the vertical dimension is small with

respect to the other dimensions. The consequence of this fact is that at every point of the domain the

bed is much closer than the boundary, the only exception being a strip of width equal to the depth

de®ned along the boundary. This strip is too narrow to discretize it with the same mesh of the system.

For this reason the viscous term has no meaning any more and therefore has been omitted.

8.2. Convection

Omitting the complete derivation from their 3D expression, the convective terms result to be

additional to the vectors F1 and F2 de®ned in (8) and are given by

Fc
1 � �0; hu2

1; hu1u2�T; Fc
2 � �0; hu1u2; hu2

2�T:
Acting on these in the same way as for F1 and F2, their contribution to (8) can be expressed as

Rc
s �

0

2u1

@u1

@x1

� u2
1

H

@H

@x1

� u1

@u2

@x2

� u2

@u1

@x2

� u1u2

H

@H

@x2

2u2

@u2

@x2

� u2
2

H

@H

@x2

� u1

@u2

@x1

� u2

@u1

@x1

� u1u2

H

@H

@x1

2666664

3777775:
Owing to the high non-linearity introduced by this expression and following the linearization

process implicitly adopted in treating equation (9), the above vector is moved to the right-hand side of

that equation, which now becomes

@DU�

@t
� Rs ÿ Rc

s :

Therefore the solution system (13) is given in this case by

�DU���n�1� � Dt�Rs ÿ Rc
s��n� �

Dt2

2
��GÿGc��Rs ÿ Rc

s���n�;

where

Gc � @Rc
s

@DU�
:

In terms of splittings the same result would have been obtained by starting from the modi®ed

equation (8) given by

@U

@t
� @

@x1

�F1 � Fc
1� �

@

@x2

�F2 � Fc
2� � Rs;

then deriving the new equation (19) as

@U

@t
� @F1

@x1

� @F2

@x2

� 1

H

@Fc
1

@x1

� @F
c
2

@x2

� �
� Rs;

with F�i � Fc
i � 0, and ®nally assuming

Rc
s �

1

H

@Fc
1

@x1

� @F
c
2

@x2

� �
:
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8.3. Wind tractions

According to Reference 34, the forces due to a wind blowing on the water free surface at a speed v,

under the assumption that v is much larger than the water velocity, are proportional to a

dimensionless constant x determined experimentally and to the square of v and inversely proportional

to the water depth h. More precisely, their contribution to the right-hand side of (8) can be expressed

as

tw � �0; xjvjv1; xjvjv2�T:
where v1 and v2 are the components of v along the two co-ordinate axes.

Figure 2. Comparison between ®eld data obtained by measurements (full curve) and results of numerical calculation (broken
curve) close to Burano island for ®rst week

Figure 3: Same as Figure 2 for second week
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As is quite evident, such forces are independent of the problem variables, therefore once h has been

replaced by H because of the long-wave assumption and they have been divided by H (as done for the

second and third equations of (8)), their inclusion in the right-hand side of the explicit system (9) only

results in the additional term

tw � 0; x
jvjv1

H
; x
jvjv2

H

� �T

:

Figure 4: Same as Figure 2 for third week

Figure 5. Same as Figure 3 for fourth week
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9. RESULTS AND CONCLUSIONS

The programme has been run for long periods of simulation; many months of simulation have been

run successfully with no loss of ¯uid and perfect behaviour. To validate the programme, ®eld data are

used taken from the data of the Uf®cio Idrogra®co e Mareogra®co of Venice. The data have been

introduced at the three inlets of the lagoon as boundary conditions on the open boundary. A

comparison has been made between the simulation results and the real data from the internal

measurement stations of the lagoon. The experimental and simulated data show good agreement at all

internal measurement stations where ®eld data have been taken. The station of Burano island has

been chosen to illustrate the results (see Figures 2±5). In fact, the results of this station are more

signi®cant than others because it is furthest from the inlets. The island has a boundary with a sharp

corner that creates vortices of turbulence which are perfectly simulated by the programme. For this

reason the station of Burano is often chosen for the control of simulations even though other stations

give better agreement.
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